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High-resolution direct numerical simulations are used to investigate freely decaying
two-dimensional turbulence. We focus on the interplay between coherent vortices and
vortex filaments, the second of which give rise to an inertial range. We find that
Batchelor’s prediction for the inertial-range enstrophy spectrum Eω(k, t) ∼ β2/3k−1,
where β is the enstrophy dissipation rate, is reasonably well satisfied once the
turbulence is fully developed, but that the assumptions which underpin the usual
interpretation of his theory are not valid. For example, the lack of a quasi-equilibrium
cascade means the enstrophy flux Πω(k) is highly non-uniform throughout the inertial
range, thus the common assumption that β can act as a surrogate for Πω(k) becomes
questionable. We present a variant of Batchelor’s theory which accounts for the
wavenumber-dependence of Πω; in particular we propose Eω(k, t) ∼ Πω(k1)

2/3k−1,
where k1 is the wavenumber marking the start of the observed k−1 region of the
enstrophy spectrum. This provides a better collapse of the data and, unlike Batchelor’s
original theory, can be justified on theoretical grounds. The basis for our proposal is
the observation that the straining of the vortex filaments, which fuels the enstrophy
flux through the inertial range, comes almost exclusively from the strain field of the
coherent vortices, and this can be characterized by Πω(k1)

1/3. Thus Eω(k) is a function
of only k and Πω(k1) in the inertial range, and dimensional analysis then yields
Eω ∼ Πω(k1)

2/3k−1. We also confirm the prediction by Davidson (Phys. Fluids, vol. 20,
2008, 025106) that in the inertial range Πω varies as Πω(k)/Πω(k1) = 1 − a−1 ln(k/k1),
where a is a constant of order 1. This corresponds to ∂Eω/∂t ∼ k−1. Surprisingly, the
measured enstrophy fluxes imply that the dynamics of the inertial range as defined
by the behaviour of Πω extend to wavenumbers much smaller than k1, but this is
masked in Eω(k, t) by the presence of coherent vortices which also contribute to Eω

in this region. In fact, we find that kEω(k, t) ≈ H (k) + A(t), or ∂Eω/∂t ∼ k−1 in this
extended low-k region, where H (k) is almost independent of time and represents the
signature of the coherent vortices. In short, the inertial range defined by ∂Eω/∂t ∼ k−1

or Πω(k) ∼ ln(k) is much broader than the observed Eω ∼ k−1 region.
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1. Introduction
When the Reynolds number Re is sufficiently large, two-dimensional turbulence is

generally observed to consist of two distinct types of structure. The large scales are
usually dominated by long-lived approximately circular coherent vortices which persist
and maintain their structure for many turnover times. In contrast, the small scales
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are made up of long thin filaments of vorticity which are continually stretched and
distorted by the turbulent velocity field. Filaments can be produced from the large-
scale vortices by various processes such as during vortex mergers, by the distortion
of vortices away from a circular shape, and by the destruction of vortices in regions
of strong strain. The majority of the energy in the turbulence is usually associated
with the coherent vortices, whilst the fine-scale filaments are responsible for enstrophy
dissipation.

It has been observed in some numerical simulations of two-dimensional turbulence
at sufficiently large Re that the enstrophy spectrum Eω(k) has a region where Eω ∼ k−1.
This is seen in both forced (Maltrud & Vallis 1991; Lindborg & Alvelius 2000) and
freely decaying (Dritschel, Tran & Scott 2007) turbulence. In order to observe a
k−1 enstrophy spectrum a significant proportion of the domain must be covered by
filaments, as coherent vortices usually lead to steeper spectra (Dritschel et al. 2008,
and references therein). Such steep spectra are typically observed at very large times,
when much of the filamentary debris has been destroyed. In this paper, we restrict
ourselves to earlier times where the k−1 enstrophy spectrum appears to be a robust
phenomenon. This spectrum is widely believed to represent a direct enstrophy cascade
as proposed by Batchelor (1969) for freely decaying turbulence and Kraichnan (1967)
for forced turbulence. However, we shall see that, particularly for freely decaying
turbulence, the usual arguments leading to the k−1 spectrum are flawed and cannot
satisfactorily explain its existence.

Batchelor’s theory is a two-dimensional analogue of Kolmogorov’s 5/3 law, which
predicts the shape of the energy spectrum E(k) in three-dimensional turbulence
(Kolmogorov 1941). Batchelor assumed that in the limit of Re → ∞ the energy
dissipation rate, ε, tends to zero, but the enstrophy dissipation rate β remains finite
due to the generation of large vorticity gradients by the creation of thin filaments,
the smallest of which takes a time of order 〈ω2〉1/2t ∼ log Re to form (note that
Tran & Dritschel 2006 have shown that if t is fixed while Re → ∞, then β → 0).
Since the enstrophy dissipation takes place primarily at the small scales, he proposed
that enstrophy cascades from large to small scales. In common with Kolmogorov’s
hypothesis, he assumed that at scales sufficiently removed from the integral scale �,
the only relevant parameters are the viscosity and the enstrophy dissipation rate β .
Dimensional analysis then gives the form of the enstrophy spectrum

Eω = β1/2ν1/2F (kν1/2/β1/6), (1.1)

where F is assumed to be a universal function. If there exists a range of scales which
are sufficiently removed from the integral scale for (1.1) to apply but large enough to
be unaffected by viscosity (an inertial range), then ν cannot be a relevant parameter
and (1.1) reduces to

Eω = Cβ2/3k−1, (1.2)

where C is a universal constant.
The assertion that the inertial range is controlled by only one external parameter,

and that this parameter is β , is a bold hypothesis. It is natural to ask how this
may be justified. Although not explicitly discussed in Batchelor (1969), there are a
number of implicit assumptions inherent in (1.1) and (1.2). A hint that this is so
comes from the fact that Batchelor repeatedly refers to this theory as a universal
equilibrium theory of the small scales, analogous to Kolmogorov’s celebrated universal
equilibrium theory of three-dimensional turbulence. To understand what Batchelor
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meant by the terms ‘universal’ and ‘equilibrium’ we must go back to Batchelor
(1953, chapter 6), where he makes it quite explicit what these two terms mean and
what their significance is. Let us start with the term ‘universal’. Here Batchelor
argues that, in three dimensions, a cascade is an information-losing process, so
that scales of very different wavenumber should be statistically independent (see
Batchelor 1953, p. 110). This is important because it suggests that the small scales
are independent of the large eddies, and in particular they will not depend explicitly
on the integral scales u and �. Note that Batchelor makes the same hypothesis
for two-dimensional turbulence in his 1969 paper, asserting statistical decoupling
of remote wavenumbers through a cascade process (Batchelor 1969, § I). The term
‘equilibrium’ is also discussed in detail in Batchelor (1953), where it is noted that
in three-dimensional turbulence the small scales evolve rapidly relative to the large
scales, so that at any instant the small scales can be considered to be in statistical
equilibrium relative to the large scales (Batchelor 1953, p. 104). Batchelor then argues
that the dual concepts of small-scale universality and small-scale equilibrium are the
central hypotheses which underpin Kolmogorov’s theory, since taken together they
imply that the only external parameters which can determine the statistics of the
equilibrium range are the energy flux entering that range and the energy flux leaving
that range (Batchelor 1953, p. 114). The final step in Batchelor’s argument is to
note that, because the small scales in three-dimensional turbulence are in statistical
equilibrium, the energy flux entering the inertial-range cascade is equal to that leaving,
which in turn equals the energy dissipation rate, ε (Batchelor 1953, p. 122). In short,
Kolmogorov’s hypothesis that, in three dimensions, ε is the only external parameter
controlling the inertial-range statistics was, in Batchelor’s opinion, crucially dependent
on the dual concepts of universality of the small scales (because greatly different scales
are statistically independent) and statistical equilibrium of the small scales (which
means the dissipation ε can be used as a surrogate for the inertial-range flux).

In his seminal 1969 paper on two-dimensional turbulence many of these details are
skipped over, but it seems likely that he had in mind a similar picture for the enstrophy
cascade. That is to say: (i) the inertial-range statistics should not depend explicitly on
the integral scales u and �, because remote wavenumbers should be statistically
independent; and (ii) statistical equilibrium of the inertial range means that the only
external parameters controlling that range are the enstrophy flux entering and leaving
the inertial range, for which β can act as a surrogate. Strong hints that this was indeed
the underlying logic come from the fact that Batchelor explicitly asserts statistical
decoupling of remote wavenumbers, repeatedly refers to his theory as an equilibrium
theory and at one point in § II uses β as a surrogate for enstrophy flux.

In any event, whatever the motivation of Batchelor (1969), the assertion that β ,
and only β , controls the inertial-range statistics needs to be justified. For example,
how can we explain that the inertial-range statistics are independent of the integral
scales u and �, without some kind of statistical decoupling of small and large
scales? Moreover, how can the inertial-range statistics, which are assumed to be
independent of all viscous dynamics, be an explicit function of the dissipation-scale
process β , unless β is being used as a surrogate for the inviscid enstrophy flux, Πω(k)?
While these questions seem to be untroubling when posed in their equivalent three-
dimensional context (for the reasons given above), they present profound difficulties
in two-dimensional turbulence, as we now discuss.

The first point to note is that there is an internal inconsistency in Batchelor’s
assumption that remote wavenumbers are statistically independent. The mean square
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strain or shear at wavenumber k can be approximated as
∫ k

0
Eω(k′) dk′ (Kraichnan

1971), so for Eω ∼ k−1 each decade of the spectrum contributes equally to the strain
at a given scale, implying that structures of very different sizes can interact. In
this respect, two-dimensional turbulence is markedly different from three-dimensional
turbulence and the reason can be traced back to the absence of vortex stretching in
two dimensions. In three-dimensional turbulence the smaller eddies have more intense
vorticity and hence stronger strain, leading to interactions which are local in scale-
space. This possibility is excluded in two dimensions by the material conservation
of vorticity, and interactions between structures of very different sizes are likely to
be important. The importance of non-local interactions between large-scale coherent
vortices and fine-scale filaments has been suggested by several authors, for example,
Brachet et al. (1988) and Oetzel & Vallis (1997). Loosely speaking, the strain acting on
the filaments comes directly from the large-scale vortices, and there is very little in the
way of filaments straining other filaments. In short, the filaments are quasi-passive,
and interactions between structures of very different scales are important.

The material conservation of vorticity in two dimensions also removes the
justification for assuming that the cascade is in a state of quasi-equilibrium, and
hence that β can be used as a surrogate for the enstrophy flux. The time scale for
eddies of scale L is ω−1

L , where ωL is the characteristic vorticity of eddies of scale
L; since eddies of all scales larger than the dissipation scales will have the same
characteristic vorticity, they therefore evolve on the same time scale. In contrast, in
three dimensions the more intense vorticity of the smaller vortices leads to faster
evolution times and hence the possibility of a quasi-equilibrium cascade. The lack
of a quasi-equilibrium cascade removes the justification for assuming a near-uniform
inertial-range flux, and if Πω is a function of k, then β can no longer be used as a
surrogate for both the enstrophy flux entering the cascade and that leaving it. Indeed,
Davidson (2008) has considered a simple model of freely decaying two-dimensional
turbulence where the inertial-range enstrophy spectrum is assumed to take the form

Eω = A(t)k−1, k1 < k < k2, (1.3)

and demonstrated that the resulting enstrophy flux is wavenumber-dependent, with
Πω(k1) 	= β . We shall summarize his model and predictions here, as they illustrate
important features of freely decaying two-dimensional turbulence which will prove to
be useful later.

Substituting (1.3) into the spectral form of the two-dimensional Kármán–Howarth
equation,

∂

∂t
(Eω(k, t)) = − ∂

∂k
(Πω(k, t)), (1.4)

yields the enstrophy flux

Πω(k) = Πω(k1) − A′(t) ln

(
k

k1

)
. (1.5)

The wavenumber-dependence of the enstrophy flux is evidently determined by the
magnitude of A′(t), and Davidson’s model suggests that this is non-negligible. By
assuming that the enstrophy spectrum falls off rapidly for k > k2, a simple balance of
energy and enstrophy dissipation (accounting for any time-dependence of k2) implies
that Πω(k2) = k2

2Πu(k2), where Πu is the the energy flux. Davidson also assumed that
at wavenumber k1 the relationship between the enstrophy and energy flux can be
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expressed as

Πω(k1) = 2ak2
1Πu(k1), (1.6)

where a is an order 1 constant which can be either positive or negative. It can be
shown that, for k2 
 k1, these relationships imply Πω(k1) = aA′(t) + O(k2

1/k2
2), giving

an enstrophy flux for k1 < k <k2:

Πω(k)

Πω(k1)
= 1 − 1

a
ln

(
k

k1

)
. (1.7)

We therefore expect that for an extended k−1 inertial range the enstrophy flux will
have a logarithmic dependence on k, and if Re is sufficiently large the variation in
flux will be non-negligible. Furthermore, the magnitude of the logarithmic correction
is determined by the relationship between the fluxes of energy and enstrophy at
wavenumber k1. Note that, in a simulation, we will take k1 to be defined by the start
of the observed Eω ∼ k−1 region. In fact, as discussed in § 4, it does not matter what
value is taken for k1, as long as it lies within the inertial range.

The results of Davidson (2008) suggest that the enstrophy flux is not uniform
throughout the inertial range, and this will have important implications for Batchelor’s
theory. For example, if we follow Batchelor (1953) and assume that the only important
external parameters in the inertial range are the flux in and out of that range, and only
one of these is equal to β , how can we justify a theory in which β is the only relevant
parameter? We could, for example, equally adopt Πω(k1) as the control parameter.

It appears, therefore, that the assumptions which underpin the usual interpretation
of Batchelor’s theory are questionable and warrant further investigation. In this paper
we use high-resolution direct numerical simulations to study the enstrophy cascade
in freely decaying two-dimensional turbulence. We show that at sufficiently high Re
an Eω ∼ k−1 region does indeed exist, but that the assumptions of local interactions
and a uniform enstrophy flux are not well satisfied. In fact, the large-scale vortices
are essential to the dynamics of the k−1 spectrum, acting directly on the small-
scale filaments. Moreover, the enstrophy flux is strongly wavenumber-dependent, in
accordance with (1.7). Nevertheless, we find that Batchelor’s scaling (1.1) still provides
an excellent description of the evolution of the enstrophy spectrum at high k, and we
have explained this apparent contradiction. The structure of the paper is as follows:
in § 2 we outline the details of our simulations and the numerical methods used, and
in § 3 we present our results. Our interpretation of the numerical findings is given in
§ 4, and our conclusions are summarized in § 5.

2. Overview of the simulations
We used standard pseudospectral methods to numerically integrate the equations

∂ω

∂t
+ ∇ · (uω) = (−1)p+1νp∇2pω, ∇ · u = 0, (2.1)

where ω is the vorticity, which is related to the velocity by ωêz = ∇×u. When p = 1 the
diffusion term represents the usual Newtonian viscosity, whilst for p > 1 it represents
hyperviscosity. The initial conditions consisted of Fourier modes with random phases
and a prescribed energy spectrum E(k) ∼ k3 exp(−3k2/2k2

p), which has a maximum

at k = kp , and the velocity was scaled to make the initial energy 1/2〈u2〉 = 1/2. We
present results from two separate runs. The first, run N, used standard Newtonian
viscosity (p = 1), had a resolution of 81922 grid points and an initial energy spectrum
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Figure 1. The evolution of (a) energy and enstrophy normalized by their initial values, and
(b, c) the enstrophy spectra in runs N and H.

with kp =8. The second, run H, used hyperviscosity with p = 4, 40962 grid points and
kp = 10. We performed 10 realizations of run H with different initial conditions in
order to obtain ensemble averages.

For run N we used the algorithm outlined in Fox & Davidson (2008). In run H,
time stepping was performed using a leap-frog scheme with a weak Robert filter for
the advection term, and a Crank–Nicholson scheme for the diffusive term. Dealiasing
in run H was performed using the usual 2/3 rule.

We define an inverse time scale ω0 based on the initial enstrophy as ω0 = 〈ω2〉1/2

and a non-dimensional time τ = ω0t . Run N was integrated up to τ = 88, whilst
run H was integrated until τ = 100. In both runs νp was chosen to give a well-
resolved dissipation range, and the initial Reynolds number for run N, defined as
Re = ω0/(k

2
pν), is 2.9 × 104.

3. Results
Figure 1 shows the evolution of the energy, enstrophy and enstrophy spectra (in

compensated form) in runs N and H. It can be seen that 〈ω2〉 falls off as 〈ω2〉 ∼ τ−n

where 0.85 <n< 0.95, which is consistent with other studies (see Lowe & Davidson
2005, and references therein). Also, it is clear that after an initial transient of τ ∼ 30 a
definite k−1 region forms. Note that Eω is pre-multiplied by k so that the k−1 region
appears as a plateau. This allows the use of a linear scale for the vertical axis and
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(a) (b) (c)

Figure 2. A subset of the vorticity field at τ =50 in run N. The area shown is 1/16 of the total
area. (a) Full vorticity field, (b) low-pass filtered vorticity and (c) high-pass filtered vorticity.
The filter cutoff is k = 35.
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Figure 3. The evolution of the enstrophy spectrum scaled according to Batchelor’s theory in
(a) run N and (b) run H.

provides a stringent test for an Eω ∼ k−1 power law. Note also the very large values
of Re required for this region to occupy a significant range of wavenumbers, which
perhaps accounts for the steeper spectra observed in many previous simulations.
To the right of the k−1 region the spectrum falls off rapidly corresponding to the
dissipation range, whilst to the left there is a pronounced hump. The hump is believed
to be due to the coherent vortices, whilst the k−1 range corresponds to the filaments.
Some indication of this can be seen by both high- and low-pass filtering the vorticity
field with a cutoff wavenumber corresponding to the start of the k−1 region. This is
shown using a sharp spectral filter at k = 35 for run N at τ = 50 in figure 2. It can
be seen that the approximate k−1 region is indeed dominated by the filaments, whilst
the coherent vortices are primarily responsible for the enstrophy spectrum at lower
wavenumbers.

Having demonstrated the existence of a k−1 enstrophy spectrum in our simulations,
we now test Batchelor’s scaling (1.1) and its hyperviscous equivalent. Figure 3 shows
the enstrophy spectra for the times which display a k−1 region scaled accordingly,
and it can be seen that the scaling works remarkably well and gives a good collapse
of both the inertial and dissipation ranges (the curves in figure 3b are smoother than
those of 3a because these are ensemble-averaged runs). There is a single anomalous
result corresponding to τ =30 in both runs; as we shall see, this is due to the fact that
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the small scales of the turbulence are not fully developed at this time, and hence the
enstrophy dissipation rate does not give a good estimate of the flux. The numerical
value of C is also comparable between the two cases: 1.3 for run N and 1.4 for run H.

At first sight, it appears that Batchelor’s theory is sufficient to explain the emergence
of a k−1 enstrophy spectrum in freely decaying two-dimensional turbulence. However,
it rests on the hypothesis that β can be used as a surrogate for the enstrophy flux Πω,
which in turn requires that Πω is uniform throughout the inertial range, and we have
seen that the usual justification for these assumptions is unlikely to hold in practice.
Figure 4 shows Πω in our simulations for the times where the enstrophy spectrum
shows a significant k−1 region. The vertical lines k = k1 and k = k2 represent the limits
of the Eω ∼ k−1 range, and the significance of the line k = k0 will be explained shortly.
It is clear from the run H results that the enstrophy flux is not constant throughout the
inertial range, and increases with increasing wavenumber. Strikingly, the variation in
Πω throughout the k−1 region is not small, and is consistent with the log k dependence
predicted by (1.5). The trend is less obvious in run N, presumably due to the shorter
inertial range and the lack of ensemble averaging. Nevertheless, there is still some
indication of the enstrophy flux increasing at higher wavenumbers.

A wavenumber-dependent enstrophy flux does not necessarily invalidate the central
assumption of Batchelor’s hypothesis that β is the only relevant dynamical parameter
in the inertial range. It does, however, make it seem most improbable. One obvious
modification to Batchelor’s theory is to replace β by Πω(k), giving

Eω(k) = CΠω(k)2/3k−1. (3.1)

However, since Πω is a function of k (3.1) no longer predicts a k−1 enstrophy spectrum.
Figure 5 shows both the compensated spectrum kEω and the form predicted by (3.1)
using the measured flux, i.e. CΠω(k)2/3. We have used a value of C = 2 as this makes the
magnitudes similar in the inertial range. It is clear that the results are not consistent,
so we must discard (3.1) as a modified theory and search for some alternative.

It appears that the success of Batchelor’s scaling demonstrated in figure 3 is
somewhat coincidental, as we have shown that the underlying assumptions leading
to (1.1) are not well satisfied. We do, however, observe a k−1 enstrophy spectrum, so
our results should be consistent with the predictions of the model of Davidson (2008)
which were outlined above; we now confirm this.
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enstrophy flux scaled according to (1.7).

We first demonstrate that the measured fluxes are consistent with (1.5), which
predicts a logarithmic variation of the flux in the inertial range. This should appear
as a straight line in the semilogarithmic plots of figure 4, and that is indeed what
is observed for run H. The slope of the line should give A′(t), and this is confirmed
in figure 6(a), where the slope is compared with a finite difference approximation to
A′(t), with A(t) measured directly from the k−1 region of the enstrophy spectrum.

Davidson’s model also predicts that A′(t) = a−1Πω(k1, t), where a is defined by (1.6)
and is a non-dimensional measure of the ratio of energy flux to enstrophy flux at
wavenumber k1. For a fixed value of k1 = 50, which is approximately the location
of the start of the k−1 region in figure 1(b), we find that A′(t) = −0.375Πω(k1, t)
(figure 6a). This implies that a is constant throughout run H, and has a numerical
value of approximately −2.67. We also demonstrate in figure 6(a) that this numerical
value of a is consistent with definition (1.6), by comparing a−1Πω(k1) with 2k2

1Πu(k1).
Equation (1.7) suggests that the non-dimensional enstrophy flux Πω(k)/Πω(k1) should
be a universal function of k/k1 for k1 <k <k2. We plot this in figure 6(b), and it can
be seen that this is indeed the case.
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It is also clear from figure 6(b) that at τ = 30 the inertial range is not fully
developed, since the flux flattens off at a much smaller wavenumber. This explains
why the enstrophy spectrum at this time did not collapse well under Batchelor’s
scaling in figure 3. We now try an experiment and replace β by Πω(k1) in Batchelor’s
scaling, i.e.

Eω ∼ Πω(k1)
2/3k−1. (3.2)

It can be seen from figure 7(a) that this gives an excellent collapse of the inertial-range
spectrum at all times when there is a k−1 region, including τ = 30. Evidently the key
parameter in Batchelor’s scaling is Πω(k1) and not β . Note that (3.2) is different from
the scaling proposed by Dritschel et al. (2007), i.e.

Eω ∼
〈
ω2

〉
ln Re

k−1, (3.3)

and indeed (3.2) gives a better collapse of the data (see figure 7c,d, where we have
taken Re = k2

ν/k2
0 , with k0 = 〈ω2〉1/2/〈u2〉1/2 and kν = 〈ω2〉1/4p/ν1/2p).

There is another rather more surprising feature of the enstrophy fluxes plotted in
figure 6(b): it appears that the logarithmic region extends to wavenumbers k < k1, say
k0 < k < k2, and in fact covers approximately two decades in wavenumber space as
opposed to the single decade occupied by the k−1 enstrophy spectrum. This extended
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logarithmic region requires the enstrophy spectrum to have the form

kEω(k, t) = A(t) + H (k), k0 < k < k2, (3.4)

where H (k) is independent of time, as can be seen from (1.4).
We can gain further verification that this is a reasonable description of our results

by subtracting A(t) from the compensated enstrophy spectrum kEω(k) to give H (k).
This is plotted in figure 7(b), and it can be seen that there is indeed a range of
wavenumbers k0 < k < k2 where H (k) is approximately independent of time. We have
reached a surprising conclusion: if we define the inertial range to be that region in
which ∂Eω/∂t ∼ k−1, or equivalently where Πω is given by (1.5), then it extends over
a much wider range than the Eω ∼ k−1 region. Now we have already seen in figure 2
that the coherent vortices occupy the wavenumber range k < k1, so it seems likely that
the presence of the coherent vortices masks the underlying dynamics of the inertial
range in the region k0 <k <k1. In short, H (k) is the signature of the coherent vortices
in this region. Note that, since we would expect some changes to the population of
coherent vortices over very long time scales, H (k) may be weakly time-dependent, but
this is not evident in our simulations.

4. Dynamics of the enstrophy cascade
We saw in the previous section that our numerical simulations demonstrate a clear

k−1 enstrophy spectrum over an extended range of wavenumbers. We also found that
the enstrophy flux is wavenumber-dependent, but that it has a universal form once
the k−1 enstrophy spectrum has developed. A wavenumber-dependent Πω(k) raises
questions as to whether a single surrogate, such as β , can be used to represent the
inertial-range flux in any theory. However, figure 7(a) shows that in spite of this,
Batchelor’s scaling with the enstrophy dissipation β replaced by Πω(k1) provides an
excellent description of our results. In this section we present an explanation of these
results.

Our starting point is to assume that the dynamics of freely decaying two-
dimensional turbulence are driven by the coherent vortices which exist at the large
scales. In making this assumption we appeal to the phenomenological picture of
fine-scale filaments being passively teased out by the strain field caused by the large
coherent vortices. Some indication that this is a reasonable assumption can be found
by calculating the enstrophy flux caused by the large-scale velocity field. We define a
low-pass filtered velocity field ũ, and use it to calculate the modified enstrophy flux

Π̃ω(k) =
∑

k′<k Re(ω̂† ̂∇ · (ũω)), where Re represents the real part, (∼)† represents the

complex conjugate and (̂∼) represents the Fourier transform. We have used a sharp
spectral filter with a cutoff at k = 50 to calculate ũ, and compare the modified flux
to the true flux at τ = 50 for run H in figure 8. It can be seen that they are in good
agreement over a wide range of wavenumbers, although there is some difference at
very large values of k. We therefore conclude that it is reasonable to assume that it
is mainly the strain field generated by the large coherent vortices which drives the
enstrophy cascade.

Continuing with our phenomenological cartoon of quasi-passive fine-scale filaments
being stretched and distorted by the strain of the coherent vortices, we consider what
features of the large scales will be relevant for the small-scale enstrophy cascade.
There appears to be two important processes: the generation of filaments, which
results in an injection of enstrophy into the cascade, and the continual thinning of
existing filaments which leads to this enstrophy being carried down to smaller scales.
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Figure 8. Comparison between the true enstrophy flux and the modified enstrophy flux with
a filter scale kc = 50 at τ = 50 in run H.

However, it is not inconceivable that a single parameter can be used to characterize
both these processes. The thinning of filaments is due to the strain from the coherent
vortices, and it is this same strain that results in new filaments being formed, usually
when weaker vortices are caught up in the strain surrounding strong vortices.

Since we anticipate that a single large-scale parameter will control the rate of
injection of enstrophy into the cascade, we choose to use Πω(k1) as our large-scale
parameter, where k1 is the lower end of the observed Eω ∼ k−1 range. Of course, the
choice of k1 is a little arbitrary, as we have seen that the true kEω(k, t) ∼ A(t) + H (k)
range extends to lower values of k, in fact down to k0. However, (1.7) tells us that it
does not matter whether we choose Πω(k1) or Πω(k′

1), with k0 <k′
1 <k1, as the two are

related by Πω(k′
1) = [1 − (1/a) ln(k′

1/k1)]Πω(k1), and k′
1/k1 is approximately constant

during the decay. That is to say, Πω(k′
1) is proportional to Πω(k1), so it does not

matter which we choose as our large-scale parameter. (We note in passing that Πω(k)
must go negative at low k, as pointed out by Davidson 2008. If k1 is chosen to lie in
this region, then the sign of a changes from negative to positive.)

With the assumptions that the enstrophy cascade is controlled by the large scales,
and that their effect can be reduced to a single parameter Πω(k1), or Πω(k′

1), we
arrive at the hypothesis that Eω = G(k, Πω(k1)), and dimensional analysis then gives
Eω =C ′Πω(k1)

2/3k−1, which we found to be in excellent agreement with our results
(figure 7a).

Note that we can re-write our proposed spectrum as Eω ∼ Πω(k1)S
−1
cv k−1, where

Scv ∼ [Πω(k1)]
1/3 is the characteristic strain rate associated with the coherent vortices.

There is strong similarity between this line of reasoning and that which leads to
the high-Prandtl-number passive-scalar spectrum Eps ∼ ΠpsS

−1
K k−1 at scales smaller

than the Kolmogorov scale but larger than the scalar dissipation scale. Here, Eps

is the passive-scalar spectrum, Πps is the flux of the passive scalar to small scales,
and SK is the r.m.s. strain field established by the Kolmogorov-scale eddies, which is
the analogue of Scv in two-dimensional turbulence. In this analogy, the Kolmogorov
eddies play the role of the coherent vortices, and the passive scalar is the analogue of
our passive vortex filaments.

This cartoon consisting of the quasi-passive straining of vortical structures also
suggests the interpretation of the extended inertial range for wavenumbers k0 < k < k1.
Recall that this range of wavenumbers is occupied by the coherent vortices which are
responsible for driving the enstrophy cascade. However, if these large-scale structures
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Blob being stretched

Figure 9. A large-scale vortex undergoing quasi-passive stretching.

get caught in a sufficiently strong strain they are stretched out in a quasi-passive
manner; an example of this process is shown in figure 9. It seems likely that these
passive large-scale structures contribute to the enstrophy flux at the large scales in
the same way that the filaments contribute to the enstrophy flux at the small scales,
and are therefore responsible for the ∂Eω/∂t ∼ k−1 region at small wavenumbers.

5. Conclusions
We have demonstrated that in freely decaying two-dimensional turbulence the

enstrophy spectrum has an extended k−1 region, and the enstrophy flux has a
logarithmic dependence on wavenumber in the inertial range. This raises questions
as to the validity of Batchelor’s inertial-range hypothesis, which uses β as a surrogate
for enstrophy flux, which in turn requires a uniform flux. Nevertheless, a simple
reworking of his theory with β replaced by Πω(k1) provides a good description of
our results, and we interpret this as a manifestation of quasi-passive filaments being
strained by coherent vortices.

We have also shown that the logarithmic enstrophy flux extends to wavenumbers
k0 <k <k1, and that the enstrophy spectrum in this region has the form kEω = H (k)+
A(t). We suggest that the dynamics for k0 < k < k1 are the same as when Eω ∼ k−1,
but the steeper spectrum due to the coherent vortices masks this in Eω(k).
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